العلام			
مجزأة	عناصر الإجابة (الموضوع الأول)		
التمرين الأول (04 نقاط)			
0.25	البرهان بالتراجع: التحقق من صحة الخاصية الابتدائية	1	
0.75	إثبات صحّة الاستلزام (إثبات أنّ الخاصية وراثية)		
0.25	$u_n + 3 > 0$ و $u_{n+1} - u_n = -\frac{2}{5}(u_n + 3)$ ، n من أجل كلّ عدد طبيعي	2	
	إذن (u_n) متناقصة تماما		
0.25	متناقصة تماما ومحدودة من الأسفل فهي متقاربة (u_n)		
2 × 0.25	$v_0 = 5$ ، $v_{n+1} = \frac{3}{5}v_n$ ، $v_{n+1} = \frac{3}{5}v_n$) من أجل كلّ عدد طبيعي (أ	3	
0.5	$v_n = 5\left(\frac{3}{5}\right)^n$ ، n عدد طبیعي n ، n عدد طبیعي		
0.5	$u_n = 5\left(\frac{3}{5}\right)^n - 3$ ، n من أجل كلّ عدد طبيعي		
0.25	$\lim_{n \to +\infty} \left(\frac{3}{5}\right)^n = 0 : $ لأن $\lim_{n \to +\infty} u_n = -3 $		
2 × 0.25	$S_n = v_0 \frac{1 - q^{n+1}}{1 - q} = \frac{25}{2} \left[1 - \left(\frac{3}{5} \right)^{n+1} \right]$ ، n عند طبیعي n عند طبیعي	4	
0.25	$T_n = S_n - 3(n+1) = \frac{19}{2} - 3n - \frac{15}{2} \left(\frac{3}{5}\right)^n$		
	التمرين الثاني (04 نقاط)		
4x0.25	$\left\{-1~;~rac{1}{10}~;~1~ ight\}$: مجموعة حلول المعادلة هي $\Delta=121$ (أ	1	
0.75	$10x^2 + 9x - 1 = (x+1)(10x-1)$ ، x عدد حقیقی عدد حقیقی		
3x0.25	$\left\{e^{-1};\;e^{rac{1}{10}};e^{1}\; ight\}:$ مجموعة حلول المعادلة هي $$	2	
0.25	$(1-e^x)(e^x+1)(10e^x-1) \le 0$ تکافئ $(1-e^x)(10e^{2x}+9e^x-1) \le 0$ ب		
0.25			
0.25			
	0.25 0.75 0.25 0.25 0.5 0.5 0.25 0.25 0.25 0.25 0.25 0.25	عناصر الإجابة (الموضوع الأول) مجزأة (الموضوع الأول) مجزأة (المرين الأول (0.1 نقاط) التمرين الأول (0.25 التحقق من صحة الخاصية الابتدائية 0.75 (غيامات الله المستازام (إثبات أنّ الخاصية وراثية) البرهان بالتراجع: التحقق من صحة الاستازام (إثبات أنّ الخاصية وراثية) $u_n + 3 > 0$ عدد طبيعي $u_n + 3 > 0$ ع $u_{n+1} - u_n = -\frac{2}{5}(u_n + 3)$ ، $u_n + 3 > 0$ عدد الإسلام المستاقصة تماما ومحدودة من الأسفل فهي متقاربة $u_n = 3$ ($u_n = 3$ المن من أجل كل عدد طبيعي $u_n = 3$, $u_n =$	

	1		
	0.25	$10x^2 + 9x - 1 \ge 0$ تكافئ $\ln(10x^2 + 9x) \ge 0$	3
0.75	0.25	إشارة $2 + 9x - 1$ من أجل x حقيقي موجب تماما	
	0.25	$\left[\frac{1}{10};+\infty\right[$ مجموعة الحلول هي	
		التمرين الثالث (04 نقاط)	
1	0.5	الاقتراح الصحيح هو: ب)	1
	0.5	$u_n=3-4n$ ، $u_n=u_n+nr$ ، n عدد طبیعي عدد طبیعي تبریر : من أجل كلّ عدد طبیعي	
1	0.5	الاقتراح الصحيح هو: أ)	2
1	0.5	y = x + 1 ومنه $y = f'(0)(x - 0) + f(0)$: تبریر	
	0.5	الاقتراح الصحيح هو: ج)	3
1		تبرير: عبارة الدالة الاصلية للدالة g التي تنعدم عند القيمة 1	
1	0.5	$G(x) = x^2 - \ln x - 1$ هي	
	0.5	الاقتراح الصحيح هو: أ)	4
1	0.5	$\frac{1}{1-0}\int_{0}^{1}3(x+1)^{2}dx = \left[(x+1)^{3}\right]_{0}^{1} = 7 : $ تبریر	
		التمرين الرابع (08 نقاط)	
0.5	0.5	$\lim_{x \to +\infty} \left(\frac{-3}{e^x + 1} \right) = 0 \lim_{x \to +\infty} (x + 1) = +\infty \text{im} \lim_{x \to +\infty} f(x) = +\infty$	1
		$+\infty$ عند (C_f) أ المستقيم المعادلة $y=x+1$ عند $y=1$	2
	0.5	$\lim_{x \to +\infty} (f(x) - (x+1)) = \lim_{x \to +\infty} (\frac{-3}{e^x + 1}) = 0$	
	0.25	$\frac{-3}{e^{x}+1}$ <0 ، $[0;+\infty[$ من أجل كلّ عدد حقيقي x من المجال	
1	0.25	e^{lpha} ويقع أسفل (Δ) يقع أسفل (C_f)	
		(Δf) gas (Δf)	

	1	$f'(x)=1+rac{3e^x}{\left(e^x+1 ight)^2}$ ، $\left[0;+\infty\right[$ من أجل كلّ عدد حقيقي x من المجال (أ	3
	1	$f'(x)>0$ ، $[0;+\infty[$ من أجل كلّ عدد حقيقي x من المجال	
		الدّالة f متزايدة تماما على المجال $]\infty + \infty$	
3	1	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$f(x)$ $-\frac{1}{2}$	
		f المعادلة $f\left(x ight)=0$ تقبل حلا وحيدا $lpha$ حيث $lpha<0.29$ لأن : الدّالة a	4
1	1	f(0,29) imes f(0,28) < 0 و $f(0,28) imes f(0,29) imes f(0,28)$ و مستمرة ومتزايدة تماما على	
		$(f(0,29) \approx 0.006 \cdot f(0,28) \approx -0.001)$	
	0.25	(Δ) رسم (Δ)	5
	0.75	رسم (C_f) رسم (C_f)	
1			
		$[0;+\infty[$ تقبل الاشتقاق على $]0;+\infty$	6
1.5	1	$F'(x) = \frac{3}{e^x + 1}$ ، $[0; +\infty[$ من x عدد حقیقی x من	
1.3	2×0.25	$\int_{0}^{\ln 2} \left(x + 1 - f(x)\right) dx = \left[F(x)\right]_{0}^{\ln 2} = 4\ln\left(\frac{64}{27}\right)cm^{2}$ (4)	

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيّد التام بسلم التنقيط

ت	العلاه		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	
	<u> </u>	التمرين الأول (04 نقاط)	
1	0.25	البرهان بالتراجع: التحقق من صحة الخاصية الابتدائية	1
	0.75	إثبات صحّة الاستلزام (إثبات أنّ الخاصية وراثية)	
0.5	0.25	من أجل كلّ عدد طبيعي $u_n-4<0$ من أجل كلّ عدد طبيعي $u_n-4>0$ ، $u_n-4<0$ و	2
0.3	0.05	متزایدة تماما (u_n)	
	0.25	متزايدة تماما ومحدودة من الأعلى وبالتالي فهي متقاربة (u_n)	_
	2×0.25	$v_0 = -2$ و $v_{n+1} = \frac{1}{4}v_n$ ، $v_0 = -2$ اً) من أجل كلّ عدد طبيعي	3
	0.5	$v_n = -2\left(\frac{1}{4}\right)^n$ ، n عدد طبیعي n	
1.75	0.5	$u_n = -2\left(\frac{1}{4}\right)^n + 4$ ، n من أجل كلّ عدد طبيعي	
	0.25	$\lim_{n \to +\infty} \left(\frac{1}{4}\right)^n = 0 : \lim_{n \to +\infty} u_n = 4 (\Rightarrow)$	
0.75	0.5	$S_n = -\frac{8}{3} \left[1 - \left(\frac{1}{4} \right)^{n+1} \right]$ ، n من أجل كلّ عدد طبيعي	4
0.75	0.25	$T_n = S_n + 4(n+1) = 4n + \frac{4}{3} + \frac{2}{3} \left(\frac{1}{4}\right)^n$ ، n من أجل كلّ عدد طبيعي	
		التمرين الثاني (04 نقاط)	
1	0.5	الاقتراح الصحيح هو: أ)	1
	0.5	$x=0$: ومنه $(e^x+5)(e^x-1)=0$ تكافئ $e^{2x}+4e^x-5=0$ ومنه	
1	0.5	الاقتراح الصحيح هو: ج)	2
1	0.5	lpha=1 تكافئ $lpha=5lpha-4$: تبرير	
	0.5	الاقتراح الصحيح هو : ب)	3
1	0.5	F(0)=0 و $F'(x)=f(x)$ ، Y عدد حقیقی $Y'(x)=f(x)$ و	

	 		1
1	0.5	الاقتراح الصحيح هو : أ)	4
	0.5	$\lim_{x \to +\infty} (x+1-e^x) = \lim_{x \to +\infty} x \left(1 + \frac{1}{x} - \frac{e^x}{x}\right) = -\infty$: تبریر	
		التمرين الثالث (04 نقاط)	
	1	$(x-2)(x^2-4x+3)=x^3-6x^2+11x-6$ ، x عدد حقیقی (أ) من أجل كلّ عدد حقیقی	1
2	4x0.25	$(x-2)(x^2-4x+3)=0$ تكافئ $x^3-6x^2+11x-6=0$ (ب	
		$\Delta\!=\!4$ ، مجموعة الحلول هي : $\{1;2;3\}$	
	3x0.25	$\left\{e^1;e^2;e^3 ight\}$: مجموعة الحلول هي $\left\{e^1;e^2;e^3 ight\}$	2
1.5		$(e^x-1)(e^x-2)(e^x-3)=0$ تكافئ $e^{3x}-6e^{2x}+11e^x-6=0$ (ب	
	3x0.25	مجموعة الحلول هي {0;ln 2;ln 3}	
	0.25	$x^3 - 6x^2 + 11x - 6 \ge 0$ تكافئ $\ln(x^3 - 6x^2 + 11x - 5) \ge 0$	3
0.5	0.25	,	
0.5	0.25	$]2;+\infty[$ من أجل x حقيقي من المجال $x^3-6x^2+11x-6$	
	0.23	مجموعة الحلول هي]∞+;3	
		التمرين الرابع (08 نقاط)	
	0.75	$\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = +\infty (\hat{1})$	
1.75	0.25	المنحني (C_f) يقبل المستقيم ذا المعادلة $x=0$ مقاربا له	1
	0.75	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \left(x - 1 - \frac{\ln x}{x} \right) = +\infty (\because$	
	1	$f'(x) = \frac{(2x+1)(x-1)}{x}$ ، $]0; +\infty[$ من أجل كلّ عدد حقيقي x من المجال أ	2
	0.5	x و $f'(x)$ اشارة $f'(x)$ اشارة $f'(x)$	
		f'(x) - 0 +	
2.75	0.5	$[1;+\infty]$ الدّالة f متناقصة تماما على $[0;1]$ ومتزايدة تماما على	
		x 0 1 +∞	
	0.75	f'(x) - ۰ + حدول التغیّرات	
		f(x)	

الإجابة النموذجية. مادة الرياضيات. الشعبة تسيير واقتصاد. بكالوريا 2023

1	2×0.5	$y = f'(2)(x-2) + f(2) = \frac{5}{2}x - 3 - \ln 2$ هي: (T) هيادلة ل	3
	0.25	$f(3) = 6 - \ln 3$	4
1	0.25	رسم (C_f) (C_f)	
		ا ا $0;+\infty$ بقبل الاشتقاق على $0;+\infty$ ومن أجل كلّ عدد حقيقي x من F (أ	5
1.5	1	ب نقبل الاستفاق على $0,+\infty$ ومن الجل كل عدد خفيفي x من y الاستفاق على y	3
	2×0.25	$\int_{1}^{3} f(x) dx = [F(x)]_{1}^{3} = (\frac{20}{3} - 3\ln 3)u.a \qquad (-1)$	

ملاحظة: تُقبل وتُراعى جميع الطرائق الصحيحة الأخرى مع التقيّد التام بسلم التنقيط